Effective water balancing to optimize energy efficiency

Tom Pak
TA Hydronic
College Associate
Needs for balancing

- To overcome difference in pipe and fittings pressure drops
- Terminal units are generally oversized
- Control valves oversizing
- Pump oversizing
Control valve oversizing

Control valves are commercially available with Kvs values increasing according to the Reynard series:

\[
\begin{array}{cccccccc}
\text{Kvs:} & 1.0 & 1.6 & 2.5 & 4.0 & 6.3 & 10 & 16 & \ldots \\
\end{array}
\]

For a water flow of 6 m³/h = 1.66 l/s, the commercially available control valves create a design \(\Delta pV \) of:

14, 36 or 91 kPa, nothing in between.

Conclusion:
Control valves are generally **oversized**.
Objectives of balancing

- Every terminal obtain design flow at design condition
- To obtain the minimum pump head required
 - In most case, index circuit takes excessive pressure drop
 - Index circuit not identified correctly

Index circuit Dp is a good indicator of how good system is optimised.
Energy saving hierarchy

Oversized plant

Balanced system at design condition
- Reduced overflow
- Optimized pump head

Dynamic balanced system
- Reduced overflow at part load
3 balancing measures

- Manual balancing valve
 - Shut off valve
 - Fixed orifice
 - Valve with removed handwheel
 - Drain
 - All in one BV

- Automatic flow controller
- Differential pressure controller

Produced by TA Hydronic College
Manual balancing

Adjusting the **design flows** in all terminal units in **design conditions**

- Design conditions are the "worst" plant operating conditions, under which maximum flow is required: control valves are all fully open.
- If design flows are adjusted under design conditions, they can be obtained in all other conditions.

This should be achieved while creating the **absolute minimum amount** of additional pressure drops.
The structure of hydronic modules can be seen as a hierarchical tree.

Before a module can be balanced, the whole descent of this module must be balanced.

Balancing order:
Automatic flow controller - characteristic

Δp FC: 0 to 14 Kpa at flow
0 to 100%
Δp FC: 14 to 220 Kpa at design flow
flow accuracy: ± 5%

Best to avoid operating above control range
Example for 14 to 220kPaD range cartridge.

Above maximum differential pressure piston fully compresses & acts as fixed orifice.

Within differential pressure range, piston responds limit to design flow ±5%.

Below minimum differential pressure piston fully extends & acts as a fixed orifice.
Automatic Balancing

CONSTANT FLOW SYSTEMS
- Good solution to avoid balancing methods
- Technical the same quality as with manual balancing valves due to constant flow and pressure conditions

VARIABLE FLOW SYSTEMS
- Works excellent with ON/OFF control valves
- Valve authority could be poor in modulating control
Control valve authority

\[\beta = \frac{\Delta P_{\text{Control valve fully open and design flow}}}{\Delta P_{\text{Control valve fully shut}}} \]

The authority formulates how much the differential pressure builds up on the control orifice of a control valve when it is closing.

Its value indicates how effectively the control valve can reduce the flow while it is closing.
Differential pressure variations

\[\Delta P \propto q^2 \]

Flow

Emission

50% load

At constant supply water temperature

20% flow

4% press. drop

Pressure drops are reduced to 4% of their design value.
Variable authority of 2-way control valves

Example:

Authority in design conditions:
\[\beta \approx \frac{15}{15 + 20} = 0.43 \]

Authority at half-load:
\[\beta = \frac{15}{15 + 20 + 0.96 \times 65} = 0.15 \]

0.96\times65 \text{kPa} + 0.96\times20 \text{kPa} \approx 82 \text{kPa}
in excess in the valve at half-load

15 kPa in the valve
20 kPa in the circuit
Δp variations distort the characteristic of the control valve
\Rightarrow the nonlinear characteristic of the terminal unit is no longer compensated

Effect of Dp variations on controlled heat output

Rangeability
area of the control valve

Valve characteristic:
$EQM_\vartheta = 0.33$ $R = 25$

Control valve lift
Summary

<table>
<thead>
<tr>
<th></th>
<th>Manual Balancing</th>
<th>Automatic Flow Controller</th>
<th>Dp Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Constant flow, On/Off</td>
<td>Constant flow, On/Off</td>
<td>Variable flow, On/Off or Modulating</td>
</tr>
<tr>
<td>Pressure drops calculation</td>
<td>Necessary</td>
<td>Necessary</td>
<td>Necessary</td>
</tr>
<tr>
<td>Installation requirement</td>
<td>Before or after terminal unit, several diameters before and after balancing valve</td>
<td>Downstream of terminal units</td>
<td>At water return side</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>Manual Balancing</th>
<th>Automatic Flow Controller</th>
<th>Dp Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>Manometer/comp.</td>
<td>Manometer</td>
<td>Manometer</td>
</tr>
<tr>
<td></td>
<td>uterized balancing instrument</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow measurement</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tolerance</td>
<td>≥ ±5%</td>
<td>± 5%</td>
<td>≥ ±5%</td>
</tr>
<tr>
<td>Balancing time</td>
<td>≈ 30min per balancing valve</td>
<td>≈ 3min per AFC (Dp verification only)</td>
<td>≈ 5min per Dp Controller</td>
</tr>
<tr>
<td>Change of flow</td>
<td>System level rebalancing</td>
<td>Replace cartridge/canister</td>
<td>Adjust spring pressure</td>
</tr>
</tbody>
</table>
Pfizer pharmaceutical production unit nearby Tours (France)

- Installed cooling capacity of 5.4 MW (3 chillers in cascade)
- Total design flow: 773 m³/h = 215 l/s
- Problem: production alarms!
- 80 balancing valves from DN 15 to DN 200

- Audit of plant with TA Select based on a first measurement campaign (presettings calculated, viscosity corrections checked)
- Full balancing performed using TA-Balance on one TA-CBI
Saving case 1

Before balancing:
- Industrial plant
 - 5.4 MW cooling capacity
- 889 m³/h = 247 l/s
- 335 kPa pump head

After balancing:
- 773 m³/h = 215 l/s (-13%)
- No production alarms!
- 270 kPa pump head (-20%)
- Pumping power reduction: 39 kW
- Savings: 17200 €/year
 - 13500 £/year
Saving case 2 – HKPU Dean office

- 10 x STAD DN20 at FCU terminal level, 1 x STAD DN50 and 1 x STAP DN50 in partner pair at distribution piping
- **Without balancing**: Total flow 0.9 l/s, $\Delta T=6^\circ C$, output 22.5kW
- **After balancing**: Total flow 0.6 l/s, $\Delta T=7^\circ C$, output 17.5kW
- Eliminate over-duty 5kW or 22%, total flow down 33%
 Equivalent to 284 sq. ft. of cooling space
 OR
 2 sets of 1HP window type AC
 with Grade 1 energy label
Wing P-Q hydronic system improvement at 7/F & 8/F PAUs

- Overflow analysis showed 20% overflow at 40% loading
- Replace existing balancing valve and add DP controller work in partner pair at PAU piping branch
- Re-balance with TA computerized balancing instrument
Improved controllability

BEFORE

AFTER

Valve Status & Flow Rate Against Time on 07/07/2007~Saturday (PAU at 7/F)

Valve Status & Flow Rate Against Time on 20/07/2007~Friday (PAU at 7/F)
Key results

- Over-duty reduction: 896 kWh/wk
- Energy input saving (COP = 2.5): 358 kWh/wk
- Saving per month ($0.9/kWH): $1,450.00/mth
- Equipment, installation & balancing: $20,000.00
- Payback: 13.8 mths
Through balancing, many hydronic problems may be detected:

- Filters or valves clogged
- Terminal units or exchangers wrongly mounted
- Pipe damaged or not connected as expected
- Shut-off valves partially shut
- Check valves or pumps installed back-to-front

Balancing exposes these flaws while they can still be cheaply repaired.
Questions?

Thank you for your attention!